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Abstract

Most state-of-the-art techniques of distinguishing natu-

ral images and computer generated images based on hand-

crafted feature and Convolutional Neural Network require

processing of the entire input image pixels uniformly. As a

result, such techniques usually require extensive computa-

tion time and memory, that scale linearly with the size of

the input image in terms of number of pixels. In this pa-

per, we deploy an efficient Deep Convolutional Recurrent

Attention model with relatively less number of parameters,

to distinguish between natural and computer generated im-

ages. The proposed model uses a glimpse network to locally

process a sequence of selected image regions; hence, the

number of parameters and computation time can be con-

trolled effectively. We also adopt a local-to-global strategy

by training image patches and classifying full-sized images

using the simple majority voting rule. The proposed ap-

proach achieves superior classification accuracy compared

to recently proposed approaches based on deep learning.

1. Introduction

In recent years, through the development of advanced

3D rendering software, it has become extremely convenient

to create computer-generated (CG) images and scenes, with

high levels of visual realism. This has wide applications in

entertainment, gaming, architecture, publishing, advertising

and marketing industries. 3D-rendering software tools are

often utilized to combine CG images with natural images

(images captured by a digital camera) to create life-like ar-

tificial scenes. However, such technical sophistication, al-

though extremely useful in film and media industries, often

pose practical threats. With the current levels of virtual re-

alism achieved with CG images, it is extremely challenging

to visually differentiate between a CG and a natural image

(NI). This is many times exploited by intelligent adversaries

to mislead forensic investigations. Differentiating between

CG images and natural images has proven to be one of the

biggest present-day challenges for the image forensics re-

searcher community.

Several methods have been proposed in recent years to

classify natural and CG images. The methods that rely on

design and extraction of hand-crafted features from an im-

age under test (or its pre-processed version) for classifica-

tion, broadly employ features of the following types: (a)

statistical [1–4]; (b) textural [5, 6], and (c) physical [7, 8].

More recently, deep learning has been adopted for CG iden-

tification [9–13].

1.1. Motivation

Convolutional neural network based architectures have

recently achieved substantial success in tasks of visual

recognition and classification [14]. However, such suc-

cessful architectures come at the cost of high computa-

tional overhead, both while training and testing. Compu-

tational overhead grows linearly with the image resolution,

as convolving filter maps using a sliding window mecha-

nism are applied on the entire image. Most of these archi-

tectures impose constraints on the input image, by down-

sampling (resizing or cropping) it so as to reduce compu-

tational overhead [14]. This drawback has motivated re-

cent researches in recurrent attention models [15–19] that

take inspiration from the way human beings perform visual

recognition tasks, specifically focusing on relevant areas as

they progress through sequences. The attention mechanism

allows the model to selectively focus its attention locally on

some regions of an image, rather than sliding towards each

region. Henceforth, the number of network parameters and

computational power can be controlled independent of the

image resolution.

Inspired by the model proposed by Ba et al. [16], in this

paper we use a deep Stochastic Convolutional Recurrent At-

tention Network to distinguish between natural images and

computer generated images. The network is trained to adap-

tively integrate features extracted from the sequence of se-

lected patches of the input image, called glimpses, via a
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Glimpse Network [15], and then feed it to the Recurrent

Neural Network (RNN) for classification. Instead of pro-

cessing an entire image, at each step, the model learns and

selects the next location to attend to, based on past informa-

tion.

The rest of this paper is organized as follows. Related

works are briefly introduced in Section 2. The model is

detailed in Section 3, followed by the experimental results

in Section 4. Finally, conclusions are drawn in Section 5.

2. Related Work

Since natural images are generated by digital cameras,

it is expected that the distinct physical image generation

pipelines of cameras must introduce unique intrinsic char-

acteristics into NI, which are absent in CG. Based on this

assumption, some methods to distinguish between NI and

CG have been reported. Ng et al. [1] studied three types of

natural image statistics derived from the power spectrum,

wavelet transform and local patch of images to distinguish

CG from NI. Wang et al. [2] present a customized statis-

tical model based on the homomorphic filter and use Sup-

port Vector Machine (SVM) as a classifier to distinguish

CGs from NIs. In [3], the authors have used hand-crafted

wavelet based features to distinguish CG images from nat-

ural images. Wu et al. [4] took several highest histogram

bins of the difference images as features to carry out clas-

sification. Li et al. [5] present a multiresolution approach

to distinguishing CGs from NIs based on local binary pat-

terns (LBPs) features and an SVM classifier. Dirik et al. [8]

developed two features that capture demosaicing features in

camera image processing pipeline, and another feature to

measure the sensor noise power changes all across the im-

age for the classification. Yao et al. [12] proposed a method

based on sensor pattern noise (SPN) and deep learning to

distinguish CGs from NIs. Rahmouni et al. [11] proposed

a custom pooling layer in CNN to optimize the features ex-

tracted in the best performing algorithms, then local esti-

mates of class probabilities are computed and aggregated

to predict the label of the whole picture. Yu et al. [9] and

Quan et al. [10] investigated other kinds of shallow CNN ar-

chitectures and achieved promising detection performance.

However, these CNN based techniques involve processing

of the entire image uniformly using classical sliding win-

dow paradigm, which incurs high computational cost to ap-

ply convolving filter on the entire image.

3. Deep Convolutional Recurrent Attention

Model

3.1. The Model

Processing an image I with an attention based model is a

sequential process with N steps. At each step n, the model

receives a location Ln along with a glimpse observation In

taken at that location. The model uses this observation to

update its internal state and predicts the next location Ln+1

to process in the next time-step. Usually the number of pix-

els in the glimpse In is much smaller than the number of

pixels in the original image I , making processing of a sin-

gle glimpse, independent of the entire image size. Inspired

by the model proposed by Ba et al. [16], our network ar-

chitecture can be decomposed into several subcomponents

including a CNN-based Glimpse Network, a Recurrent Net-

work, a Classification Network and an Emission Network as

illustrated in Fig. 1.

CNN based Glimpse Network:

The glimpse network is a non-linear function that receives

the current input image patch or glimpse, In, and its loca-

tion tuple Ln, as inputs, where Ln = I(xn, yn). It outputs

a glimpse vector Gn. The job of the CNN based Glimpse

Network is to extract a set of useful features from location

Ln of the raw visual input. We use Gimage(In|Wimage)
to denote the output vector from function Gimage(·) that

takes an image patch In and is parameterized by weights

Wimage. In our implementation, Gimage(·) consists

of two blocks of CONV–BN–ReLU–CONV–BN–ReLU–

MAXPOOL (where CONV indicates a Convolution layer

followed by Batch Normalization (BN) and Rectified Lin-

ear Unit (ReLU) as the activation function), followed by

two fully-connected (FC) layers. Separately, the location

tuple is mapped by Gloc(Ln|Wloc) using a fully connected

hidden layer and parameterized by weights Wloc. Both

Gimage(In|Wimage) and Gloc(Ln|Wloc) have the same

dimension. We combine the image information with the lo-

cation tuple by multiplying the two vectors element-wise to

get the final glimpse feature vector Gn, as follows:

Gn = Gimage(In|Wimage)Gloc(Ln|Wloc)

Recurrent Network:

The glimpse feature vector Gn from the glimpse network

is supplied as input to the recurrent network at each time

step. The recurrent network consists of two recurrent lay-

ers that contain stacked Long-Short-Term Memory (LSTM)

units. The lower and upper recurrent layers are parameter-

ized by weights Wr1 and Wr2, respectively. We define the

two outputs of the recurrent layers as r1 and r2, where:

r1
n
= LSTM(Gn, r

1
n−1|Wr1)

r2
n
= LSTM(r1

n
, r2

n−1|Wr2)

Emission Network:

The emission network E(·) parameterized by weights We,

takes the current state of recurrent network as input and

makes a prediction on where to extract the next image patch
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Figure 1. The Deep Convolutional Recurrent Attention Model. The input In is a patch from the input image I . At each time step n, the

model focuses selectively on a given location ln, extracts a feature vector Gn, updates its internal state and chooses the next location Ln+1

to attend. The process is repeated for a fixed number of steps N , during which the model incrementally combines the information in a

coherent manner to produce a final classification yN .

for the glimpse network. It consists of a fully connected

(FC) hidden layer that maps the feature vector, r2
n

from the

top recurrent layer to a coordinate tuple, and generates the

location of the next location tuple:

Ln+1 = E(r2
n
|We)

Classification Network:

The classification network O(·) parameterized by weights

Wo outputs a prediction for the class label y based on the

final feature vector r1
N

of the lower recurrent layer. The

classification network has one fully connected hidden layer

and a softmax output layer for the class y which outputs:

P (y|I) = O(r1
N
|Wo)

Training and Optimization

As proposed by Mnih et al. [15], we used a hybrid super-

vised loss scheme in training to optimize the network. In

particular, classification loss was defined as cross-entropy

between the final prediction and the ground-truth label.

However, the Emission Network has a non-differentiable

transfer function, which means standard back-propagation

techniques are not applicable. As proposed in [15, 16]

we use a policy gradient method in the form of REIN-

FORCE algorithm [20] to train this part of the model to

select glimpse locations that lead to good classification re-

sults. Adam optimizer [21] is used as optimization method.

4. Experiments and Results

4.1. Dataset

In our experiments, 800 CG images were downloaded

from the Columbia Dataset [22] while 1000 NIs were taken

from the RAISE dataset [24]. All of these natural images

were downloaded in TIFF format and converted to JPEG

with a quality factor of 95. The images were divided into

three subsets for training (70%), testing (20%) and valida-

tion (10%). We applied patch augmentation [14], i.e., we

randomly cropped both the computer-generated graphics

and the natural images into image patches sized at 30× 30,

60 × 60, 120 × 120 and 240 × 240. Every patch was pre-

processed by subtracting the per-pixel mean of all patches.

In view of computational cost and diversity of image size,

we adopted the local-to-global strategy [10] of training in

small patches and classifying full-sized images using the

simple majority voting rule. We also evaluated our work on

the Rahmouni et al.’s dataset [11]. Rahmouni et al.’s CG

images were downloaded from the Level-Design Reference

Database [23] ( a collection of video game screenshots) and

PG images were taken from RAISE dataset.

4.2. Experimental Setup

All our experiments were conducted using Chainer [25],

an open source deep learning framework and conducted on

a GeForce GTX 1080 Ti GPU. At each time step, a glimpse

from the input image is fed to the network and the model

predicts parameters of extraction for the next iteration as

well as a class label. Details of the glimpse size and the
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Figure 2. Examples of computer generated images from (top row) Columbia Dataset [22], (middle row) Level-Design Reference

Database [23] and (bottom row) natural images from RAISE Dataset [24]

.

Figure 3. Validation accuracy during training for all patch size images

.

number of glimpses (the number of time steps = the num-

ber of glimpses per image) used for each patch size is given

in Table 1. In this experiment, we use ReLU activation for

all layers except the recurrent network, where standard tanh

activation in LSTM units are employed. The size of filters

in each convolution of the glimpse network is chosen to be

2× 2 and the numbers of filters are 32 each. The max pool-

ing layers are of size 2 × 2, and stride size of 2 pixels was

used after second and fourth convolutional layers. There are

256 units in each LSTM layer and 256 hidden units in each

fully-connected layer of the model.

During training, we set batch size to 128 images. The

network parameters were optimized using the adaptive mo-

ment estimation (Adam) method [21] in a mini-batch man-

ner with the size 128. We experimentally set the two dif-

ferent momentum values as β1 = 0.9 and β2 = 0.999 as

in [21]. The learning rate was set to 0.0005 initially, and

divided by 2 after every 300 epochs. Parameters in convo-

lution layers and FC layers were initialized using the Glorot

uniform procedure [26]. Biases in all layers are initialized

to be zero. All weights in the recurrent network were initial-

ized using normal distribution. Each experiment was con-

ducted for 1000 epochs.

4.3. Experimental Results

In our experiments, all images in the testing dataset were

clipped into image patches of size ranging from 30× 30 to

240 × 240. These image patches were input to the trained

model, and the prediction results for the image patches

were obtained. The validation accuracy plot on different

patch sizes is presented in Fig. 3. Our method is evaluated

by computing the Area Under Receiver Operating Char-

acteristic (ROC) curve (AUC) and the average classifica-

tion accuracy. Based on the prediction results of the image

patches, we deployed a majority vote scheme [10] to obtain

the average classification accuracy for the full-size images.

We compared our results with Quan et al. [10]. Quan et al.

has proposed three different networks: NET-1 for patch size

240 × 240; NET-2 for patch size 60 × 60 and 120 × 120;

and NET-3 for patch size 30 × 30. The average classifica-

tion accuracies obtained by our method and that of Quan

et al. [10] on patch-size images (ranging from 30 × 30 to
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Figure 4. ROC curve comparison on the patch-size (P) testing data and full-size testing data after major voting (V) on the corresponding

patch-size images

.
Table 1. Comparison of the average classification accuracy of the proposed technique with the CNN based classifier proposed in [10]

Methods Patch size (no. of glimpses) Patch classification Full size classification

Proposed 30×30 (6 (8×8) glimpses) 90.90% 92.67%

Proposed 60×60 (6 (8×8) glimpses) 94.90% 94.55%

Proposed 120× 120 (16 (8× 8) glimpses) 96.90% 97.60%

Proposed 240×240 (16 (8×8) glimpses) 97.40% 97.20%

Quan et al. [10](NET-3) 30×30 73.90% 77.30%

Quan et al. [10](NET-2) 60×60 77.90% 84.30%

Quan et al. [10](NET-2) 120×120 89.00% 86.60%

Quan et al. [10](NET-1) 240×240 91.90% 92.00%

Table 2. Comparison of the average classification accuracy of the proposed technique with the CNN based classifier proposed in [11]

Dataset Methods Patch classification Full size classification

RAISE vs. Columbia
Proposed 96.90% 97.60%

Rahmouni et al. [11] 75.68% 86.49%

RAISE vs. Level-Design
Proposed 95.97% 98.76%

Rahmouni et al. [11] 89.76% 99.30%

Table 3. Comparison of the number of network parameters of the proposed technique with the CNN based classifiers proposed in [10]

and [11]
Methods No. of Parameters

Proposed 1,200,901 (≈ 1.2M)

Quan et al. [10](NET-1) 17,265,458 (≈ 17.2M)

Quan et al. [10](NET-2 and NET-3) 4,440,485 (≈ 4.4M)

Rahmouni et al. [11] 2,840,34 (≈ 2.8M)

240 × 240 pixels) and full-size images are tabulated in Ta-

ble 1. Also the number of network parameters are tabulated

in Table 3. The total number of parameters was estimated

by counting the total number of weight and bias parameters

in the respective networks. It is observed that the accuracy

improves when the patch size increases. Furthermore, ROC

curves and AUC scores on patch-size and full-size images

are depicted in Fig. 4. The average classification accuracy

for both patch-size and full-size images of our method is

always higher than the corresponding values of [10], while

having substantially less number of parameters, as evident

from Table 3. The number of parameters in the proposed

model for patch size 30× 30, 60× 60 and 120× 120 is 3.6
times less and for patch size 240 × 240 is 14.3 times less

than that of [10].

Next, we also compared our work with that of Rahmouni
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et al.’s method [11]. Rahmouni et al.’s dataset consists

of 1800 CG images collected from the Level-Design Ref-

erence database [23] and 1800 PG images collected from

RAISE database [24]. For comparison, images are divided

into patches where for Rahmouni et al.’s method, test patch

size images set to 100 × 100 are extracted as per their de-

fault setting described in [11] and we consider patch size

120× 120 for our method. We compared our work not only

on their dataset (RAISE vs. Level Design) but also on our

test dataset (RAISE vs. Columbia). The average classi-

fication accuracies of both patch-size images and full-size

images are tabulated in Table 2. Though Rahmouni et al.

architecture is a three layer neural network with few num-

ber of parameters, but it can be observed from Table 2 that

our proposed method achieved performance as good as that

of Rahmouni et al.’s in case of RAISE vs. Level Design

dataset but outperformed substantially in case of RAISE vs.

Columbia dataset along with fewer number of parameters

as evident from Table 3.

5. Conclusion

We have presented a Deep Convolutional Recurrent

Attention Model that efficiently classifies computer gen-

erated images and natural images. The main ideas

are the use of glimpse network to only process small

patches of the input image, and the use of an at-

tention mechanism to determine the next location for

the image patch. The model outperforms the state-of-

the-art works for both patch-size and full-size images,

while having lesser number of parameters in the network

model.
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